Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.006
Filtrar
1.
Anal Chem ; 96(16): 6209-6217, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607319

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but dangerous side effect of adenoviral-vectored COVID-19 vaccines. VITT had been linked to production of autoantibodies recognizing platelet factor 4 (PF4). Here, we characterize anti-PF4 antibodies obtained from a VITT patient's blood. Intact mass measurements indicate that a significant fraction of these antibodies represent a limited number of clones. MS analysis of large antibody fragments (the light chain and the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire and reveals the presence of a mature complex biantennary N-glycan within the Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS was used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to the IgG2 subclass and verifies that the light chain belongs to the λ-type. Incorporation of enzymatic de-N-glycosylation into the peptide mapping routine allows the N-glycan in the Fab region of the antibody to be localized to the framework 3 region of the VH domain. This novel N-glycosylation site is the result of a single mutation within the germline sequence. Peptide mapping also provides information on lower-abundance (polyclonal) components of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1-IgG4) and both types of the light chain (λ and κ). This case study demonstrates the power of combining the intact, middle-down, and bottom-up MS approaches for meaningful characterization of ultralow quantities of pathogenic antibodies extracted directly from patients' blood.


Assuntos
Fator Plaquetário 4 , Humanos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/química , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Autoanticorpos/imunologia , Autoanticorpos/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Púrpura Trombocitopênica Trombótica/induzido quimicamente , Púrpura Trombocitopênica Trombótica/imunologia
2.
Ultrastruct Pathol ; 48(3): 234-245, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619195

RESUMO

Platelet-viral interactions are evolving as a new concern. Coagulation disorder is a major consequence of the COVID-19 infection. In chronic hepatitis virus infections, defect in coagulation factors, thrombocytopenia and platelet function abnormalities are common. A SARS-CoV-2 infection on top of chronic viral hepatitis infection can be common in areas where viral hepatitis is endemic. Here, we investigate the platelet ultrastructural changes and estimate the serum platelet factor-4 (PF-4), ferritin, CRP, and D-dimer in COVID-19 patients (n = 60), COVID-19 patients with associated chronic viral hepatitis (n = 20), and healthy subjects (n = 20). Ultrastructural changes were demonstrated in all test groups, denoting platelet activation. In chronic viral hepatitis patients, Platelet ultrastrustural apoptotic changes were also seen. Significantly high levels of PF-4 were confirmed in moderate and severe COVID-19 patients (P.value <0.001), with a cut off value of 17 ng/ml for predicting disease severity. A positive correlation of PF-4 with the level of serum ferritin, CRP, and D-dimer (p value < 0.001) was noted, while negatively correlated with platelet count and platelet granule count (p value < 0.001). In our study, chronic viral hepatitis patients presented mild COVID-19 signs, and their PF-4 level was comparable with the subgroup of mild COVID-19 infection. The platelet's critical role in COVID-19 coagulopathy and chronic viral hepatitis is evidenced by the ultrastructural changes and the high levels of PF4. Moreover, a dual viral infection poses a substantial burden on the platelets, necessitating close monitoring of the patient's coagulation profile.


Assuntos
Plaquetas , COVID-19 , Humanos , COVID-19/complicações , COVID-19/sangue , COVID-19/patologia , Plaquetas/ultraestrutura , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , SARS-CoV-2 , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Contagem de Plaquetas , Hepatite C Crônica/complicações , Hepatite C Crônica/sangue , Hepatite C Crônica/patologia , Idoso , Fator Plaquetário 4/sangue , Ativação Plaquetária
3.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540666

RESUMO

Pathogenic platelet factor 4 (PF4) antibodies contributed to the abnormal coagulation profiles in COVID-19 and vaccinated patients. However, the mechanism of what triggers the body to produce these antibodies has not yet been clarified. Similar patterns and many comparable features between the COVID-19 virus and heparin-induced thrombocytopenia (HIT) have been reported. Previously, we identified a new mechanism of autoimmunity in HIT in which PF4-antibodies self-clustered PF4 and exposed binding epitopes for other pathogenic PF4/eparin antibodies. Here, we first proved that the SARS-CoV-2 spike protein (SP) also binds to PF4. The binding was evidenced by the increase in mass and optical intensity as observed through quartz crystal microbalance and immunosorbent assay, while the switching of the surface zeta potential caused by protein interactions and binding affinity of PF4-SP were evaluated by dynamic light scattering and isothermal spectral shift analysis. Based on our results, we proposed a mechanism for the generation of PF4 antibodies in COVID-19 patients. We further validated the changes in zeta potential and interaction affinity between PF4 and SP and found that their binding mechanism differs from ACE2-SP binding. Importantly, the PF4/SP complexes facilitate the binding of anti-PF4/Heparin antibodies. Our findings offer a fresh perspective on PF4 engagement with the SARS-CoV-2 SP, illuminating the role of PF4/SP complexes in severe thrombotic events.


Assuntos
COVID-19 , Trombocitopenia , Humanos , Anticorpos Monoclonais Humanizados , Fatores Imunológicos , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus
4.
Sci Rep ; 14(1): 6231, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485973

RESUMO

The human population is ageing worldwide. The World Health Organization estimated that the world's population of people aged 60 years and older will increase to at least 30%, coinciding with a growing frequency of cognitive and cardiovascular disease. Recently, in preclinical studies platelet Factor 4 (PF4) was presented as a pro-cognitive factor. This molecule is released by platelets in the circulation and could be present in blood products destined for transfusion. We wondered if PF4 levels are correlated to the age of the blood donor or to the storage time of platelet concentrates (PCs) intended for transfusion? We observed higher levels of PF4 in PCs from elderly donors compared to younger donors, while PC storage time did not determine PF4 levels expression.


Assuntos
Fator Plaquetário 4 , Plaquetoferese , Idoso , Humanos , Pessoa de Meia-Idade , Fator Plaquetário 4/metabolismo , Plaquetas/metabolismo , Transfusão de Plaquetas , Doadores de Sangue , Preservação de Sangue
5.
Commun Biol ; 7(1): 308, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467823

RESUMO

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents. Native mass spectrometry demonstrates that up to three PF4 tetramers can be assembled on a heparin chain, consistent with the molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/efeitos adversos , Complexo Antígeno-Anticorpo , Fator Plaquetário 4/metabolismo , Trombocitopenia/induzido quimicamente , Plaquetas/metabolismo , Fatores Imunológicos
6.
Expert Opin Pharmacother ; 25(3): 281-294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465524

RESUMO

INTRODUCTION: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.


Assuntos
Vacinas contra COVID-19 , Heparina , Receptores de IgG , Trombocitopenia , Trombose , Humanos , Trombose/tratamento farmacológico , Trombose/imunologia , Heparina/efeitos adversos , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/imunologia , Anticoagulantes/efeitos adversos , Fator Plaquetário 4/imunologia , Tromboinflamação/tratamento farmacológico , Animais , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , COVID-19/complicações , COVID-19/prevenção & controle , COVID-19/imunologia , Ativação Plaquetária/efeitos dos fármacos
8.
Br. j. haematol ; 204(2): 459-475, 20240201.
Artigo em Inglês | BIGG - guias GRADE | ID: biblio-1537647

RESUMO

This guideline updates and widens the scope of the previ-ous British Society for Haematology (BSH) Clinical guide-lines for Diagnosis and Management of Heparin-Induced Thrombocytopenia: Second Edition1 to include functional assays in the diagnosis of heparin-induced thrombocytope-nia (HIT), when to use direct-acting oral anti-coagulants, and the role of intravenous (IV) immunoglobulins and plasma exchange in the management of HIT and spontane-ous HIT.HIT is an immune-mediated, highly pro-thrombotic dis-order of platelet activation caused by pathogenic antibodies against a platelet factor 4 (PF4)­heparin complex. It is the most frequent drug-induced immune thrombocytopenia and may lead to life-threatening thrombosis. There are two distinct forms of HIT: type I, also known as heparin-asso-ciated thrombocytopenia, which is a non-immunological response to heparin treatment, mediated by a direct interac-tion between heparin and circulating platelets causing plate-let clumping or sequestration, and type II, which is immune mediated.


Assuntos
Humanos , Trombocitopenia/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Trombocitopenia/diagnóstico , Imunoglobulinas/análise , Fator Plaquetário 4/análise , Heparina/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-38199058

RESUMO

Heparin-induced thrombocytopenia (HIT) is an immune complication of heparin therapy. Antibodies binding to complexes of platelet factor 4 (PF4) and heparin is the trigger of HIT. A method using size exclusion chromatography with multi-angle laser light scattering detector (SEC-MALS) was developed in this work. The soluble ultra-large complex (ULC) was separated from the small complex (SC) and their molecular weights (MWs) were firstly measured. The complexes of PF4 and three heparins with different MW, including unfractionated heparin (UFH), dalteparin (Daltep) and enoxaparin (Eno) were characterized using this method. The contents and the sizes of ULC increased gradually when heparins were added to PF4 to certain amounts. While, they reduced after more heparins were added. It is the first time to measure the MWs of the biggest ULC of PF4-heparins as millions of Dalton. at the proper ratios of PF4 to heparin (PHR). Meanwhile, those mixtures at those certain PHRs induced the higher expression of CD83 and CD14 markers on dendritic cells (DCs) suggesting that they had stronger immunogenicity and is critical for HIT.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/farmacologia , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Anticoagulantes/química , Trombocitopenia/induzido quimicamente , Fatores Imunológicos , Cromatografia em Gel
11.
Lab Med ; 55(1): 34-39, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094798

RESUMO

OBJECTIVE: The aim of this study was to determine an optimal cutoff value for the newly available HemosIL-AcuStar-HIT-IgG assay (AcuStar) for the diagnosis of heparin-induced thrombocytopenia (HIT). METHOD: We evaluated the performance of AcuStar using serotonin release assay (SRA) as the gold standard and incorporated 4T score calculation in a cohort of suspected HIT cases. Statistical analysis was performed to determine optimal cutoff value for the diagnosis of HIT. RESULT: A diagnosis of HIT can be excluded with a platelet factor 4 (PF4) value of <0.4 U/mL by AcuStar and 4T score in the low-risk category (≤3). All other cases will require confirmation with a functional test. CONCLUSION: Our study resulted in the implementation of a diagnostic algorithm for laboratory diagnosis of HIT, which incorporates pretest calculation of 4T score and AcuStar as a screening test, with reflex confirmation by SRA. This new algorithm resulted in extended hours of test availability and a more rapid turnaround time in reporting PF4 results.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/efeitos adversos , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Fator Plaquetário 4 , Imunoglobulina G , Técnicas de Laboratório Clínico , Ensaio de Imunoadsorção Enzimática , Anticoagulantes/efeitos adversos
13.
J Thromb Haemost ; 22(3): 818-833, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029855

RESUMO

BACKGROUND: Activated platelets secrete platelet factor 4 (PF4), which contributes to viral pathogenesis. Recently, we reported the proviral role of PF4 in replication of closely related flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV). OBJECTIVES: This study aimed to investigate the detailed mechanism of PF4-mediated virus replication. METHODS: PF4-/- or wild-type (WT) mice were infected with JEV, and host defense mechanisms, including autophagic/interferon (IFN) responses, were assessed. WT mice were pretreated with the CXCR3 antagonist AMG487 that inhibits PF4:CXCR3 pathway. This pathway was tested in PF4-/- monocytes infected with DENV or in monocytes isolated from patients with DENV infection. RESULTS: PF4-/- mice infected with JEV showed reduced viral load and improved brain inflammation and survival. PF4-/- mice synthesized more IFN-α/ß with higher expression of phosphorylated IRF3 in the brain. PF4 treatment decreased IRF-3/7/9 and IFN-α/ß expression and suppressed autophagic LC3-II flux and lysosomal degradation of viral proteins in JEV-infected cells. PF4 increased the expression of P-mTOR, P-p38, and P-ULK1Ser757 and decreased expression of LC3-II. Decreased autophagosome-lysosome fusion in turn promoted DENV2 replication. The above processes were reversed by AMG487. Uninfected PF4-/- monocytes showed elevated LC3-II and autophagosome-lysosome fusion. Microglia of JEV-infected PF4-/- mice exhibited elevated LC3-II inversely related to viral load. Similarly, monocytes from PF4-/- mice showed reduced infection by DENV2. In patients with DENV infection, higher plasma PF4 and viral load were inversely correlated with LC3-II, LAMP-1, and lysosomal degradation of DENV-NS1 in monocytes during the febrile phase. CONCLUSION: These studies suggest that PF4 deficiency or inhibition of the PF4:CXCR3 pathway prevents JEV and DENV infection. The studies also highlight the PF4:CXCR3 axis as a potential target to develop treatment regimens against flaviviruses.


Assuntos
Dengue , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Pirimidinonas , Animais , Humanos , Camundongos , Acetamidas , Dengue/tratamento farmacológico , Dengue/metabolismo , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/tratamento farmacológico , Fatores Imunológicos , Fator Plaquetário 4 , Receptores CXCR3
14.
Blood ; 143(1): 64-69, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37883794

RESUMO

ABSTRACT: Platelet factor 4 (PF4) is an abundant chemokine that is released from platelet α-granules on activation. PF4 is central to the pathophysiology of vaccine-induced immune thrombocytopenia and thrombosis (VITT) in which antibodies to PF4 form immune complexes with PF4, which activate platelets and neutrophils through Fc receptors. In this study, we show that PF4 binds and activates the thrombopoietin receptor, cellular myeloproliferative leukemia protein (c-Mpl), on platelets. This leads to the activation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription (STAT) 3 and STAT5, leading to platelet aggregation. Inhibition of the c-Mpl-JAK2 pathway inhibits platelet aggregation to PF4, VITT sera, and the combination of PF4 and IgG isolated from VITT patient plasma. The results support a model in which PF4-based immune complexes activate platelets through binding of the Fc domain to FcγRIIA and PF4 to c-Mpl.


Assuntos
Janus Quinase 2 , Trombocitopenia , Humanos , Complexo Antígeno-Anticorpo/metabolismo , Plaquetas/metabolismo , Heparina/efeitos adversos , Fatores Imunológicos/efeitos adversos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fator Plaquetário 4 , Receptores de Trombopoetina/metabolismo , Trombocitopenia/induzido quimicamente
15.
J Thromb Haemost ; 22(2): 470-479, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37838242

RESUMO

BACKGROUND: Functional platelet activation assays are required for the diagnosis of heparin-induced thrombocytopenia (HIT). Due to their sophisticated methodology, they are only available in reference centers. OBJECTIVES: To evaluate the diagnostic accuracy of the flow cytometry-based heparin-activated procoagulant platelet (HAPP) assay in the laboratory diagnosis of HIT. METHODS: Procoagulant platelets (PCP), defined by the expression of phosphatidylserine and CD62-P, were evaluated by flow cytometry in platelet-rich plasma from healthy donors after incubation with patient sera in the absence and presence of heparin. A sample was considered positive in HAPP assay, if the following 3 criteria were met: 1) the percentage of PCPs was ≥10.3% after incubation with 0.2 IU/mL heparin, 2) the fold increase in presence of 0.2 IU/mL heparin compared with buffer was ≥1.5, and 3) 100 IU/mL of heparin resulted in ≥50% inhibition of PCP. HAPP assay was validated in a prospective cohort (n = 202) of consecutive specimens submitted to our laboratory for serologic diagnosis of HIT. Heparin-induced platelet activation (HIPA) assay was used as the reference standard. RESULTS: HIT-positive sera induced PCPs in the presence of 0.2 IU/mL heparin, which was inhibited with 100 IU/mL of heparin. In the prospective validation cohort, there were 15 HIPA+ and 187 HIPA- sera. HAPP was positive in 20 samples in this cohort. Using optimized cut-offs, HAPP assay had a sensitivity of 93.3% and specificity of 96.8%. CONCLUSION: HAPP assay is promising as a simple and reliable functional assay for HIT; however, further studies are needed to confirm our results in larger cohorts.


Assuntos
Trombocitopenia , Humanos , Citometria de Fluxo/métodos , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Plaquetas/metabolismo , Heparina , Ativação Plaquetária , Fator Plaquetário 4
16.
J Thromb Haemost ; 22(3): 860-868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065529

RESUMO

Heparin-induced thrombocytopenia (HIT) is an immune-mediated prothrombotic disorder characterized by a drop in platelet count and an increased risk of thromboembolic events. The accurate diagnosis of HIT involves clinical assessment and laboratory testing with well-characterized functional tests. Recent research has shown the potential of investigating procoagulant platelet formation induced by HIT antibodies. To successfully implement these assays in clinical laboratories, careful consideration of technical and preanalytical factors is crucial. In this communication from the SSC Platelet Immunology, we provide a consensus from experts on the use of flow cytometry in HIT diagnosis, highlighting the importance of standardized protocols.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/efeitos adversos , Trombocitopenia/induzido quimicamente , Trombocitopenia/diagnóstico , Plaquetas , Contagem de Plaquetas , Anticorpos , Comunicação , Fator Plaquetário 4
17.
J Thromb Haemost ; 22(4): 1046-1055, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38159648

RESUMO

BACKGROUND: COVID-19 vaccines have been widely used to control the SARS-CoV-2 pandemic. In individuals receiving replication-incompetent, adenovirus vector-based COVID-19 vaccines (eg, ChAdOx1 nCoV-19 [AstraZeneca] or Ad26.COV2.S [Johnson & Johnson/Janssen] vaccines), a very rare but serious adverse reaction has been reported and described as vaccine-induced immune thrombotic thrombocytopenia (VITT). The exact mechanism of VITT following Ad26.COV2.S vaccination is under investigation. Antibodies directed against human platelet factor 4 (PF4) are considered critical in the pathogenesis of VITT, suggesting similarities with heparin-induced thrombocytopenia. It has been postulated that components of these vaccines mimic the role of heparin by binding to PF4, triggering production of these anti-PF4 antibodies. OBJECTIVES: This study aimed to investigate the potential interaction between human PF4 and Ad26.COV2.S vaccine using several biophysical techniques. METHODS: Direct interaction of PF4 with Ad26.COV2.S vaccine was investigated using dynamic light scattering, biolayer interferometry, and surface plasmon resonance. For both biosensing methods, the Ad26.COV2.S vaccine was immobilized to the sensor surface and PF4 was used as analyte. RESULTS: No direct interactions between PF4 and Ad26.COV2.S vaccine could be detected using dynamic light scattering and biolayer interferometry. Surface plasmon resonance technology was shown to be unsuitable to investigate these types of interactions. CONCLUSION: Our findings make it very unlikely that direct binding of PF4 to Ad26.COV2.S vaccine or components thereof is driving the onset of VITT, although the occurrence of such interactions after immunization (potentially facilitated by unknown plasma or cellular factors) cannot be excluded. Further research is warranted to improve the understanding of the full mechanism of this adverse reaction.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Vacinas , Humanos , Ad26COVS1 , Fator Plaquetário 4 , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Fatores Imunológicos
18.
Thromb Haemost ; 124(5): 423-431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109906

RESUMO

INTRODUCTION: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a highly prothrombotic reaction to COVID-19 (coronavirus disease 2019) adenoviral vector vaccines. Its distinct bleeding and thrombotic patterns compared with other platelet consumptive disorders remain unclear. METHODS: We performed a systematic review of the literature (PubMed and Embase) up to July 31, 2022, including case reports and case series providing nonaggregate data of VITT patients. Accurate VITT diagnosis required fulfillment of the following criteria: (1) endorsement by the authors, (2) consistent vaccine type and timing, (3) presence of thrombocytopenia and thrombosis, (4) detection of anti-platelet factor 4 antibodies. Data are presented as frequencies with 95% confidence intervals (CIs) calculated with the exact binomial method. RESULTS: We retrieved 143 eligible studies, describing 366 patients. Of 647 thrombotic events, 53% (95% CI: 49-56) were venous thromboses at unusual sites and 30% (95% CI: 27-34) were cerebral venous sinus thromboses (CVSTs). The ratio of venous-to-arterial events was 4.1. Thromboses in most sites were associated with at least another thrombotic event, with the exception of CVST and CNS arterial thrombosis (isolated in 49 and 39% of cases, respectively). Bleeding occurred in 36% (95% CI: 31-41) of patients; 68% (95% CI: 59-75) of bleeding events were intracranial hemorrhages (ICHs). Overall mortality was 24% (95% CI: 19-29), and 77% (95% CI: 58-90) in patients with isolated CVST complicated by ICH. CONCLUSION: VITT displays a venous-to-arterial thrombosis ratio comparable to heparin-induced thrombocytopenia. However, VITT is characterized by a higher prevalence of CVST and ICH, which contribute to the increased bleeding frequency and mortality.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hemorragia , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/complicações , Trombose/etiologia , Pessoa de Meia-Idade , Feminino , Masculino , Trombose dos Seios Intracranianos/etiologia , SARS-CoV-2/imunologia , Adulto , Anticoagulantes/efeitos adversos , Fator Plaquetário 4/imunologia , Idoso , Trombose Venosa , Fatores de Risco
19.
Hematology Am Soc Hematol Educ Program ; 2023(1): 1-10, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066843

RESUMO

Antibodies against the chemokine platelet factor 4 (PF4) occur often, but only those that activate platelets induce severe prothrombotic disorders with associated thrombocytopenia. Heparin-induced thrombocytopenia (HIT) is the prototypic anti-PF4 disorder, mediated by strong activation of platelets through their FcγIIa (immunoglobulin G [IgG]) receptors (FcγRIIa). Concomitant pancellular activation (monocytes, neutrophils, endothelium) triggers thromboinflammation with a high risk for venous and arterial thrombosis. The classic concept of HIT is that anti-PF4/heparin IgG, recognizing antigen sites on (cationic) PF4 that form in the presence of (anionic) heparin, constitute the heparin-dependent antibodies that cause HIT. Accordingly, HIT is managed by anticoagulation with a nonheparin anticoagulant. In 2021, adenovirus vector COVID-19 vaccines triggered the rare adverse effect "vaccine-induced immune thrombotic thrombocytopenia" (VITT), also caused by anti-PF4 IgG. VITT is a predominantly heparin-independent platelet-activating disorder that requires both therapeutic-dose anticoagulation and inhibition of FcγRIIa-mediated platelet activation by high-dose intravenous immunoglobulin (IVIG). HIT and VITT antibodies bind to different epitopes on PF4; new immunoassays can differentiate between these distinct HIT-like and VITT-like antibodies. These studies indicate that (1) severe, atypical presentations of HIT ("autoimmune HIT") are associated with both HIT-like (heparin-dependent) and VITT-like (heparin-independent) anti-PF4 antibodies; (2) in some patients with severe acute (and sometimes chronic, recurrent) thrombosis, VITT-like antibodies can be identified independent of proximate heparin exposure or vaccination. We propose to classify anti-PF4 antibodies as type 1 (nonpathogenic, non- platelet activating), type 2 (heparin dependent, platelet activating), and type 3 (heparin independent, platelet activating). A key concept is that type 3 antibodies (autoimmune HIT, VITT) require anticoagulation plus an adjunct treatment, namely high-dose IVIG, to deescalate the severe anti-PF4 IgG-mediated hypercoagulability state.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Humanos , Fator Plaquetário 4/efeitos adversos , Fator Plaquetário 4/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Vacinas contra COVID-19/efeitos adversos , Inflamação , Trombose/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Trombocitopenia/terapia , Heparina/efeitos adversos , Anticoagulantes/efeitos adversos , Anticorpos , Púrpura Trombocitopênica Idiopática/diagnóstico , Púrpura Trombocitopênica Idiopática/terapia , Fatores Imunológicos/efeitos adversos
20.
Sci Rep ; 13(1): 21970, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081853

RESUMO

Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias do Colo , Animais , Camundongos , Esplenomegalia , Fator Plaquetário 4/genética , Fatores Imunológicos , Inibidores da Angiogênese , Neoplasias do Colo/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/terapia , RNA Mensageiro , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...